Nanomaterial Based Probiotic Encapsulation Enhancing Viability
Nanomaterial encapsulation of probiotics presents significant viability challenges across temperature, pH, and storage conditions. In conventional formulations, probiotic survival rates typically drop by 2-3 log CFU/g during processing and decline further during storage, with temperatures above 37°C causing rapid deterioration. Traditional encapsulation materials often fail to provide adequate protection against gastric acid (pH 1.5-3.5), resulting in viability losses exceeding 80% before reaching intestinal targets.
The engineering challenge lies in developing nanomaterial matrices that simultaneously shield probiotics from environmental stressors while maintaining sufficient permeability for nutrient exchange and controlled release at target sites.
This page brings together solutions from recent research—including surface acoustic wave atomization techniques for nano-scale encapsulation, electrospun nanofiber matrices with controlled layering, chitosan-tripolyphosphate electrospraying systems, and multi-layer coatings with vegetable wax admixtures. These and other approaches enable practical formulations that maintain probiotic viability during manufacturing, storage, and gastrointestinal transit while ensuring targeted delivery to specific physiological compartments.
1. Solid Feed Additive with Freeze-Dried Megasphaera Elsdenii and Encapsulation for Anaerobic Stability
AXIOTA US INC, KANSAS STATE UNIVERSITY RESEARCH FOUNDATION, 2025
Solid feed additive, composition, and method to improve animal growth and health by administering freeze-dried Megasphaera elsdenii bacteria to animals like poultry and equines. The M. elsdenii cells are produced by culturing the bacteria, harvesting them, freezing, and freeze-drying under anaerobic conditions. This allows long-term storage without refrigeration. Administering the freeze-dried cells improves feed intake, growth rate, conversion, carcass gain, egg production, bone mineralization, etc. It also prevents lactic acid buildup and reduces opportunistic microbe growth in the gut. Encapsulating the cells further enhances stability.
2. Microbial Culture Microcapsules with Triple-Layer Coating Including Vegetable Wax Admixture
CHR HANSEN AS, 2025
Microencapsulated microbial cultures with enhanced survivability under harsh conditions, such as high temperature, high acidity, and high water activity. The cultures comprise a core material of microbial cells encapsulated by three coating layers: a first layer of plant-based polymer, a second layer of a specific vegetable wax admixture, and a third layer of plant-based polymer. The vegetable wax admixture, comprising a medium melting point wax and a high melting point wax, provides thermal insulation and protection against environmental stressors.
3. Nanocoating of lactic acid bacteria: properties, protection mechanisms, and future trends
Qing Fan, Xiaoqun Zeng, Zhen Wu - Informa UK Limited, 2024
Lactic acid bacteria (LAB) is a type of probiotic that may benefit intestinal health. Recent advances in nanoencapsulation provide an effective strategy to protect them from harsh conditions via surface functionalization coating techniques. Herein, the categories and features of applicable encapsulation methods are compared to highlight the significant role of nanoencapsulation. Commonly used food-grade biopolymers (polysaccharides and protein) and nanomaterials (nanocellulose and starch nanoparticles) are summarized along with their characteristics and advances to demonstrate enhanced combination effects in LAB co-encapsulation. Nanocoating for LAB provides an integrity dense or smooth layer attributed to the cross-linking and assembly of the protectant. The synergism of multiple chemical forces allows for the formation of subtle coatings, including electrostatic attractions, hydrophobic interactions, , and metallic bonds. Multilayer shells have stable physical transition properties that could increase the space between the probiotic cells and the outer environment, thus delaying... Read More
4. Nano-Scale Probiotic Microcapsules Formed via Low-Temperature Surface Acoustic Wave Atomization
SHENZHEN INSTITUTES OF ADVANCED TECHNOLOGY, 2024
Nano-scale probiotic microcapsules prepared by low-temperature ultrasonic atomization technology, comprising a method of injecting a low-temperature treated probiotic suspension into a surface acoustic wave atomizer to produce nano-droplets encapsulating the probiotics. The microcapsules exhibit improved bioavailability, stability, and targeting properties, enabling precise delivery of probiotics to the gastrointestinal tract and lungs for enhanced therapeutic effects.
5. Monodisperse Microparticles Comprising Electrospun Nanofibers with Controlled Layering and Uniform Shape
DANMARKS TEKNISKE UNIVERSITET, 2024
Monodisperse microparticles with uniform shape and compactness level, comprising electrospun nanofibers, are prepared by electrospinning a polymer solution and cutting the resulting sheet into uniform particles. The microparticles can be mono- or multi-layered, with each layer containing the same or different polymers, active substances, and concentrations. The cutting tool enables precise control over particle size and shape, and the microparticles can be used for targeted delivery of active substances, including drugs, vaccines, and microorganisms.
6. Encapsulation Matrices
Jennifer Burgain, Joël Scher, Claire Gaïani - Wiley, 2024
The selection of the encapsulation matrix is a preliminary stage that requires a rigorous methodological approach. Microencapsulation is the technique of choice for preserving the vitality of probiotic bacteria. Nowadays, the use of prebiotics, starch, gelatin and milk proteins as encapsulation matrices offers greater functionality. These components not only protect bacteria during food processing and storage, as well as gastrointestinal conditions, but also have their own health benefits. Knowledge of the adhesion phenomena between bacteria and the materials used for encapsulation is fundamental to understanding the structuring of matter. A better understanding of encapsulation mechanisms (process and formulation) and bacteriamatrix interactions will enable us to optimize the protection of probiotic bacteria in order to preserve their vitality and vectorize them to their site of action, where they will be able to exert their beneficial effect.
7. Encapsulation of Probiotics within Double/Multiple Layer Beads/Carriers: A Concise Review
Sofia Agriopoulou, Slim Smaoui, Moufida Chaari - MDPI AG, 2024
An increased demand for natural products nowadays most specifically probiotics (PROs) is evident since it comes in conjunction with beneficial health effects for consumers. In this regard, it is well known that encapsulation could positively affect the PROs' viability throughout food manufacturing and long-term storage. This paper aims to analyze and review various double/multilayer strategies for encapsulation of PROs. Double-layer encapsulation of PROs by electrohydrodynamic atomization or electrospraying technology has been reported along with layer-by-layer assembly and water-in-oil-in-water (W
8. Microencapsulated Microbial Cultures with Non-Homogeneous Coacervate Matrix Containing Carbohydrates, Proteins, and Antioxidants
CHR HANSEN AS, 2024
Microencapsulated microbial cultures with enhanced storage stability at elevated temperatures, comprising a microbial culture entrapped in a coacervate comprising a non-homogeneous encapsulation matrix with a high ratio of matrix material to core material, wherein the matrix material includes carbohydrates, proteins, and antioxidants. The microencapsulated cultures exhibit preserved viability over extended periods of storage at temperatures up to 37°C, enabling applications in products where refrigerated storage is not feasible.
9. The encapsulation strategy to improve the survival of probiotics for food application: From rough multicellular to single-cell surface engineering and microbial mediation
Yongkai Yuan, Yin Ming, Qixiao Zhai - Informa UK Limited, 2024
The application of probiotics is limited by the loss of survival due to food processing, storage, and gastrointestinal tract. Encapsulation is a key technology for overcoming these challenges. The review focuses on the latest progress in probiotic encapsulation since 2020, especially precision engineering on microbial surfaces and microbial-mediated role. Currently, the encapsulation materials include polysaccharides and proteins, followed by lipids, which is a traditional mainstream trend, while novel plant extracts and polyphenols are on the rise. Other natural materials and processing by-products are also involved. The encapsulation types are divided into rough multicellular encapsulation, precise single-cell encapsulation, and microbial-mediated encapsulation. Recent emerging techniques include cryomilling, 3D printing, spray-drying with a three-fluid coaxial nozzle, and microfluidic. Encapsulated probiotics applied in food is an upward trend in which "classic probiotic foods" (yogurt, cheese, butter, chocolate, etc.) are dominated, supplemented by "novel probiotic foods" (tea, p... Read More
10. Viability of Free and Alginate–Carrageenan Gum Coated <i>Lactobacillus acidophilus</i> and <i>Lacticaseibacillus casei</i> in Functional Cottage Cheese
Muhammad Saeed, Rehana Khanam, Hammad Hafeez - American Chemical Society (ACS), 2024
The survivability of encapsulated and nonencapsulated probiotics consisting of
11. Delivery of Probiotics with Cellulose-Based Films and Their Food Applications
Ying Yang, J. W. Zhang, Chengcheng Li - MDPI AG, 2024
Probiotics have attracted great interest from many researchers due to their beneficial effects. Encapsulation of probiotics into biopolymer matrices has led to the development of active food packaging materials as an alternative to traditional ones for controlling food-borne microorganisms, extending food shelf life, improving food safety, and achieving health-promoting effects. The challenges of low survival rates during processing, storage, and delivery to the gut and low intestinal colonization, storage stability, and controllability have greatly limited the use of probiotics in practical food-preservation applications. The encapsulation of probiotics with a protective matrix can increase their resistance to a harsh environment and improve their survival rates, making probiotics appropriate in the food packaging field. Cellulose has attracted extensive attention in food packaging due to its excellent biocompatibility, biodegradability, environmental friendliness, renewability, and excellent mechanical strength. In this review, we provide a brief overview of the main types of cellu... Read More
12. Microcapsule Composition with Biodegradable Encapsulation and Aqueous-Phase Non-Partitioning Preservation System
GIVAUDAN SA, 2024
Microcapsule composition comprising biodegradable encapsulating material and functional material, wherein the composition is stabilized against microbial degradation by an anti-microbial preservation system comprising at least one non-partitioning preservation agent that remains in the aqueous phase. The preservation system prevents premature leakage of functional material from the microcapsules during storage and distribution, while maintaining the biodegradable properties of the encapsulating material.
13. Probiotic Surface Film Formation via In Situ Covalent Cross-Linking and Metal Chelation with Dual-Layer Bio-Enzyme Interaction
CHENGDU BANGJIALEJUN BIOTECHNOLOGY CO LTD, 2024
Beneficial use of probiotics in transport and storage processes. The activity protecting capacity to the probiotics is achieved by forming a film in situ on the surface of the probiotics by using natural biological macromolecules and metal ions on surfaces of the probiotics through covalent cross-linking or metal chelating action in situ, and a second layer is formed by interactions between a bio-enzyme and the natural biological macromolecules.
14. Slurry-Based Microcapsule Composition with Non-Agglomerating Properties and Sieve Compatibility
GIVAUDAN SA, 2024
Microcapsule composition in the form of a slurry which does not show any signs of microcapsule agglomeration and passes through a sieve of a size of about two to three times the volume average diameter (Dv50) of the microcapsules without blocking the sieve. The composition includes a core comprising at least one functional material and a shell encapsulating the core.
15. Nanocarrier-mediated probiotic delivery: a systematic meta-analysis assessing the biological effects
Ramendra Pati Pandey, Gunjan, Himanshu - Springer Science and Business Media LLC, 2024
Abstract Probiotics have gained a significant attention as a promising way to improve gut health and overall well-being. The increasing recognition of the potential health advantages associated with functional food products, leading to a specific emphasis on co-encapsulating probiotic bacteria and bioactive compounds within a unified matrix. To further explore this concept, a meta-analysis was performed to assess the effects of probiotics encapsulated in nanoparticles. A comprehensive meta-analysis was conducted, encompassing 10 papers published from 2017 to 2022, focusing on the encapsulation of probiotics within nanoparticles and their viability in various gastrointestinal conditions. The selection of these papers was based on their direct relevance to the research topic. Random-effect models were used to aggregate study-specific risk estimates. In the majority of studies, it was observed that nano-encapsulated nanoparticles showed improved viability over time compared to their free state counterparts. At various time intervals, the odds ratios (OR) with 95% confidence intervals (C... Read More
16. Encapsulation of piROBotics within Double/Multiple Layer Beads/Carriers: A Concise Review
Sofia Agriopoulou, Slim Smaoui, Moufida Chaari - MDPI AG, 2024
An increased demand for natural products nowadays most specifically probiotics (PRO) is evident since it comes in conjunction with beneficial health effects for the consumers. In this regard, it is well known that encapsulation could affect positively the PRO&#039;s viability throughout food manufacturing and long-term storage. This paper aims to analyze and review various multilayer strategies for encapsulation of PRO. Double-layer encapsulation of PRO by electro-hydrodynamic atomization or electrospray technology has been reported along with layer-by-layer assembly and water-in-oil-in-water (W1/O/W2) double emulsions to produce multilayer PRO-loaded carriers. Finally, their applications in food products are presented. The resistance (cover material) and viability of (PRO) to mechanical damage, during gastrointestinal transit and shelf life of these trapping systems are also described. The PRO encapsulation in double and multiple-layer coatings combined with other technologies can be examined to increase the opportunities for new functional products with amended functionalities ... Read More
17. Research advances on encapsulation of probiotics with nanomaterials and their repair mechanisms on intestinal barriers
Xiaochen Wang, Mengxi Yu, Jianming Ye - Tsinghua University Press, 2024
Probiotics participate in various physiological activities and contribute to body health. However, their viability and bioefficacy are adversely affected by gastrointestinal harsh conditions, such as gastric acid, bile salts and various enzymes. Fortunately, encapsulation based on various nanomaterials shows tremendous potential to protect probiotics. In this review, we introduced some novel encapsulation technologies involving nanomaterials in view of predesigned stability and viability, selective adhesion, smart release and colonization, and efficacy exertion of encapsulated probiotics. Furthermore, the interactions between encapsulated probiotics and the gastrointestinal tract were summarized and analyzed, with highlighting the regulatory mechanisms of encapsulated probiotics on intestinal mechanical barrier, chemical barrier, biological barrier and immune barrier. This review would benefit the food and pharmaceutical industries in preparation and utilization of multifunctional encapsulated probiotics.
18. Production of CaCO3-single-coated probiotics and evaluation of their spectroscopic properties, morphological characteristics, viability, and intestinal delivery efficiency
Y. S. Lee, Seonmi Shin, Myoung‐Jin Kim - Elsevier BV, 2024
The intake of probiotics offers various health benefits; however, their efficacy depends on the maintenance of viability during industrial processing and digestion. Probiotic viability can be compromised during encapsulation, freeze-drying, storage, and digestion, necessitating multiple coatings. This complicates production and raises costs. In this study, CaCO
19. Single-cell encapsulation systems for probiotic delivery: Armor probiotics
Runan Zhao, Ting Yu, Jiaheng Li - Elsevier BV, 2024
Functional foods or drugs based on probiotics have gained unprecedented attention and development due to the increasingly clear relationship between probiotics and human health. Probiotics can regulate intestinal microbiota, dynamically participating in various physiological activities to directly affect human health. Some probiotic-based functional preparations have shown great potential in treating multiple refractory diseases. Currently, the survival and activity of probiotic cells in complex environments in vitro and in vivo have taken priority, and various encapsulation systems based on food-derived materials have been designed and constructed to protect and deliver probiotics. However, traditional encapsulation technology cannot achieve precise protection for a single probiotic, which makes it unable to have a significant effect after release. In this case, single-cell encapsulation systems can be assembled based on biological interfaces to protect and functionalize individual probiotic cells, maximizing their physiological activity. This review discussed the arduous challenges... Read More
20. Extrusion and Co-extrusion: A Technology in Probiotic Encapsulation with Alternative Materials
Aziz Homayouni Rad, Amir Mohammad Mortazavian, Hadi Pourjafar - Bentham Science Publishers Ltd., 2024
Encapsulation, in particular extrusion and co-extrusion, is a common practice to protect probiotics from the harsh conditions of the digestive tract as well as processing. Hydrocolloids, including proteins and carbohydrates, natural or modified, are a group of ingredients used as the wall material in extrusion. Hydrocolloids, due to their specific properties, can significantly improve the probiotic survivability of the final powder during the microencapsulation process and storage. The present article will discuss the different kinds of hydrocolloids used for microencapsulation of probiotics by extrusion and co-extrusion, along with new sources of novel gums and their potential as wall material.
Get Full Report
Access our comprehensive collection of 104 documents related to this technology